
NASA-CR-203443

Octree Optimization

AI Globus

Report RNR-90-011, July 1990

This work was supported by NASA Contract NAS 2-12961 to

Computer Scineces Corporation for the Numerical Aerodynamic

Simulation Systems Division at NASA Ames Research Center.

Copies of this report are available from:

NAS Applied Research Office

Mail Stop T045-1
NASA Ames Research Center

Moffett Field, CA 94035

(415) 604-4332



Octree Optimization A1Globus

Octree Optimization

A1 Globus

Computer Science Corporation
NASA Ames Research Center

18 July 1990

Abstract

A number of algorithms search large, typically 3D, computational spaces
for features of interest. Marching cubes isosurface generation described by
Lorensen and Cline _ is an example. The speed of these algorithms is
dependent on the time necessary to 1. find the features of interest in the
data and 2. to compute over them. This paper describes an optimizing
search using octrees to divide computation space. Information stored in the
branch nodes is used to prune portions of computation space thus avoiding
unnecessary memory references and tests for features of interest. This
technique is implemented for marching cubes isosurface generation on
computational fluid dynamics data. Numerical experiments were run
indicating a factor of 3.8 - 9.0 overall performance increase, measured by
stopwatch; and a factor of 3.9 - 9.9 speedup in calculation times as
measured by the UNIX times() 2 utility. The overhead is a one time cost of
0.2 - 2.8 the time to compute an average isosurface and O(n) space with a
small constant factor.

Introduction

The algorithms whose optimization is addressed here are those that must
repeatedly search a large computational space, e.g., a large 3D array of
real numbers representing a scalar field, to find features of interest.
Algorithms presently using exhaustive search can sometimes be sped up
significantly if not all of computational space need be examined in detail.

Octree optimization breaks up computation spaces with an octree to divide
the search space. The octree technique, originally developed for solid
modeling, has been described by Jackins and Tanimoto 3 and Meagher 4. In
octree optimization, the root node represents all of computational space. It
is recursively subdivided into eight children each representing
approximately one-eighth of the space. Recursion ceases when each node

1 7/17/90



Octree Optimization AI Globus

Root Node

r-
Branch Nodes

Leaf No_es

[] Data _ Tree

Point Node

Data

Connectivity

Tree

Connectivity

Previous work includes a paper by Woodwark 5 who used a similar
technique in a different context. The kD tree search techniques developed
by Bently 6 in the data base world are closely related. Wilhelm at the
University of California at Santa Cruz has also implemented an octree.-
based computation space optimization technique and plans to apply it to
marching cube isosurface generation [personal communication]. Glassner 7
uses octrees in physical space to reduce the number of objects to test for
ray trace intersections. Kerlick 8 describes a competitive technique which
uses sorting to limit searches for isosurfaces generated using marching

3 7/17/90



Octree Optimization A1 Globus

ISOLEV creates function mapped cutting planes by generating level fields,
applying the marching cubes algorithm to find isosurfaces (which are
always planes) and shading the result using the scalar field of interest.
Sweeps are particularly useful for cutting plane displays since, if they are
fast enough, the user can get a understanding of the whole 3D space.

ISOLEV was modified to optionally use octree optimization. The
modifications were implemented such that precisely the same code is
invoked to perform the marching cubes algorithm whether octree
optimization is used or not. This is necessary for the validity of the
numerical experiments.

Three operations are required for octree optimization implementation:
Build the tree, necessary when the size of the computational space
changes. Each node is made to represent a space as 'cubic' as
possible, i.e., the dimensions are as nearly equal to each other as
possible.
Set the min/max values in each node, necessary when the scalar field
of interest changes or a new direction for a cutting plane is chosen.
The min/max is used to test isovalues to see if the surface passes
through the data represented by a node.
Walk the tree, necessary when the value of the isosurface or location

of the cutting plane changes. When a leaf node is reached and the
surface is present, run the marching cubes algorithm on the sub-

space represented.

The tree is built top down. The root node represents all of computation
space. This is divided into eight (approximately) equal sub-spaces - usually
by dividing each dimension by two - to produce the root's children. Oddly
shaped subspaces are handled by an algorithm described below. This
procedure is applied recursively to generate the whole tree. Recursion
stops when a node represents less than 32 grid points.

To set the min/max values, the tree is walked and the min/maxes passed up
from node to node.

To walk the tree, a function is called with the following parameters:
• Tree node to walk.

• Isovalue.

5 7/17/90



Octree Optimization A1 Globus

pv = 1,1,8
else if D1 >= 2Dm >= 2Ds

pv = 1,2,4
else

pv = 2,2,2

To get the eight subspaces needed for the children, divide each
dimension by the appropriate part of pv. If it divides evenly, or the
divisor is two, everything is free. If not, then make all but the last section
equal to the dimension size / pv[n]. Then let x - (dimension size mod
pv[n]) - 1. Make x sections one larger starting with the second to last and
working backwards. This will cause all the sections to be within one of the
same size.

ExDeriments

A set of computational experiments were run to determine if octree
optimization of ISOLEV actually improves performance substantially.
Data sets were taken from work performed at the National Aeronautic
Simulation facility at NASA Ames Research Center.

Time is the dependent variable, the presence or absence of octree
optimization the independent variable. Measures were taken by sweeping a
cutting plane through each data set and sweeping isovalues to get
isosurfaces through each data set. Each sweep was done in 20-21 steps. In
each case, experimental runs with and without optimization were made.
Stopwatch time was collected since it is the most important to the user. For
stopwatch timed runs, each condition was repeated three times and the
median or mean taken since uncontrolled system events can theoretically
cause variations in the results. Actual results were very closely clustered.

In a separate experimental run, the UNIX times() utility was used to
generate the:

• Total time to compute the surfaces in optimized and unoptimiz_'d
modes.

• Minimum time to compute on_....eeof the surfaces in optimized and
unoptimized modes.

• Maximum time to compute on___eeof the surfaces in optimized and
unoptimized modes.

7 7/17/90



Octree Optimization A1 Globus

Performance Increase on Blunt Fin Data Set

Stopwatch

Max

Min 19.4
46.0

40.1
_85.0

9.9
6.1

Total 6.5
3.9

I I I I I

0.0 20.0 40.0 60.0 80.0 100

_ isosurface/solid [] isosurface/dots [] x cut/solid
[] x cut/dots

Note that improvements are very large for minimum times. The fact that most
the search space can be pruned away by the optimization causes this. The
opposite effect causes maximum times to be more nearly equal.

Stopwatch timed improvements are not as good since they include time to rende
the surfaces and overhead introduced by FAST.

9 7/17/90



Octree Optimization A1 Globus

This next chart expresses tree building time as a factor of the average time to
generate one unoptimized isosurface (or cutting plane). E.g., building the tree
(including generating min/maxes) for the Blunt Fin took 0.3 times as long as
unoptimized generation of an average isosurface.

x cut/dots

x cut/solid

isosurface/dots

isosurface/solid

_0.3
_0.4
"--"10.2
gO.3

Tree Building Time

1.5

,1.2
1.8

r",r_ I 2.4

,1.3 1.9
0.5

I I I I

0.0 0.5 1.0 1.5 2.0 2.5

.

i BF build tree ["1BF rain/max [] SH build tree []SH rain/max [

Note that the time penalty for building optimization octrees is quite small. It is
paid back within a few isosurfaces.

BF means Blunt Fin. SH means shuttle.

The raw data is in appendix A.

Design, implementation and testing took about one person/week spread
over about two weeks calendar time.

Octree optimization should be useful if the interesting regions of a
computational space are somewhat sparse and clumpy. Isosurfaces and
function mapped cutting planes fit this description. There exist
pathological isosurfaces that fill nearly the entire space where performance

11 7/17/90



Octree Optimization AI Globus

spaces particularly if the interesting regions are sparse and clumpy.
Furthermore, implementation is quick and easy.

Acknowledoements

rd like to thank Dr. Val Watson and Dr. Tom Lasinski at NASA Ames

Research Center for supporting this work.

Referen_;_s

I. W. E. Lorenson and H.E. Cline, "Marching Cubes: a High Resolution
3D Surface Construction Algorithm," Computer Graphics, Vol 21, No
4, July 1987, pp 163-169.

2. UNIX Programmer' Reference Manual, Volume 1 Section 2

. C. L. Jackins and S. L. Tanimoto, "Octtrees and Their Use in

Representing Three-Dimensional Objects," Computer Graphics and
Image Processing, Vol. 14, No. 3, p 249-270

o D. Meagher, "Geometric Modelling Using Octree Encoding, ",
Computer Graphics and Image Processing, Vol. 19, No. 2, 1982, pp.
129-147.

. J. R. Woodwark, "Techniques of spatial segmentation in solid
modelling," Spacial Data Processing Using Tesseral Methods, Collected
Papers from Tesseral Workshops 1 and 2, pp. 325-30. Sept. 1986
Swindown and Reading, England. Publ: Nat. Environ. Res. Council,
Swindon, England

.

.

J. L. Bentley, "Multidimensional Binary Search Trees Used for
Associative Searching," Association of Computing Machines, Vol. 18,
pp 509-517.

A. S. Glassner, "Space Subdivision for Fast Ray Tracing", IEEE
Computer Graphics and Applications, Vol. 4, No. 10, pp. 15-22.

8. G. D. Kedick, "ISOLEV: A Level Surface Cutting Plane Program for
CFD Data," Report RNR-89-006, NAS Applied Research Office, MS

13 7/17/90



Raw Performance Data

Appendix A: ISOLEV Performance Data

IRIS GTX 120/16 meg
2-Jul-90

UNIX time() utility times (in seconds)

Data

bluntfin/pressure

bluntfin/pressure
bluntfin/pressure
bluntfin/pressure
bluntfin/pressure

bluntfin/pressure
bluntfin/pressure
bluntfin/pressure

bluntfin/pressure
bluntfin/pressure
bluntfin/pressure
bluntfin/pressure
bluntfin/pressure

shuttle/pressure
shuttle/pressure
shuttle/pressure
shuttle/pressure

shuttle/pressure
shuttle/pressure
shuttle/pressure

shuttle/pressure
shuttle/pressure
shuttle/pressure

Output Opt? n Total

isosurface/solk YES
0sosurface/soli( ND
isosurface/soli( YES

0sosurface/soli( N3
Isosurface/dots I_D
isosurface/dots YES
x cut/solid hid

x cut/solid ND

ibuild tree
minimax

x cut/solid YES
x cut/dots iYES
x cut/dots ND

isosurface/dots YES

isosurface/dots ND
isosurface/solic I_D
isosurface/solic YES

x cut/ solid YES
x cut/ solid N3
x cut/ dots YES
x cut/ dots ND

build tree
minimax

21

21
20
20

20
20
21

20
1

1
20
2.1
21

21
21
21
21

21
21

21
21

1
1

User

Ave Min

System User iSystem User
30.6

114.04
27.56

107.35

18.16
2.78

110.4
105.31

1.74

1.14
17.35

2.1
20.72

5.82
97.89

532.19
56.15

62.7
614.52

8.17
114.12

12.89

7.9

0.91 1.46 0.04 0.09
0.14 5.43 0 4.01
0.28 1.38 0.01 0.1

0.18 5.37 0 4.01
0.06 0.91 0 0.85
0.05 0.14 0 0.01

0.19 5.26 0 4.84
0.09 5.27 0 4.84
0.04

0.01
0.2 0.87 0.01 0.25

0.14 0.1 0 0.02
0.12 0.99 0! 0.92

0.83 0.28 0.04 0

1.12 4.66 0.05 4.4
5.38 25.3 0.26 22.35
5.67 2.67 0.27 0.04
8.01 2.99 0.38 0.73

9.48 29.3 0.45 27.42
3.13 0.37 0.14 0.091
3.28 5.43 0.16 5.18;

0.29
0.14

Max

SystemiUser System
0 4.8 0.37

0 8.89 0.04
0 4.49_ 0.06
0 8.83 0.06
0 1.01 0.02

0 0.43 0.02
0! 5.68 0.05
0! 5.71 0.02

0 1.46 0.03
0 0.15 0
0 1.02 0.04

0 1.95 0.38
0.01 5.2 0.13
0.03 43.1 1.83

0 17.6 1.63

0.04 3.92 1.25
0.09 30.1 0.91

0 0.54 0.69

0.01 5.79 0.71

Page 1


